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Abstract

Rotaviruses are a major cause of viral gastroenteritis in children. For accurate and sensitive 

detection of rotavirus RNA from stool samples by reverse transcription-polymerase chain reaction 

(RT-PCR), the extraction process must be robust. However, some extraction methods may not 

remove the strong RT-PCR inhibitors known to be present in stool samples. The objective of this 

study was to evaluate and compare the performance of six extraction methods used commonly for 

extraction of rotavirus RNA from stool, which have never been formally evaluated: the MagNA 

Pure Compact, KingFisher Flex and NucliSENS® easyMAG® instruments, the NucliSENS® 

miniMAG® semi-automated system, and two manual purification kits, the QIAamp Viral RNA kit 

and a modified RNaid® kit. Using each method, total nucleic acid or RNA was extracted from 

eight rotavirus-positive stool samples with enzyme immunoassay optical density (EIA OD) values 

ranging from 0.176 to 3.098. Extracts prepared using the MagNA Pure Compact instrument 

yielded the most consistent results by qRT-PCR and conventional RT-PCR. When extracts 

prepared from a dilution series were extracted by the 6 methods and tested, rotavirus RNA was 

detected in all samples by qRT-PCR but by conventional RT-PCR testing, only the MagNA Pure 

Compact and KingFisher Flex extracts were positive in all cases. RT-PCR inhibitors were detected 

in extracts produced with the QIAamp Viral RNA Mini kit. The findings of this study should 

prove useful for selection of extraction methods to be incorporated into future rotavirus detection 

and genotyping protocols.
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Introduction

Group A rotaviruses are well established as the major cause of acute viral gastroenteritis in 

infants and young children worldwide. Rotaviruses belong to the Reoviridae family and 

possess a genome of 11 segments of double-stranded RNA (dsRNA). The binomial 

classification system for rotaviruses is based on the two outer capsid proteins, VP7 (G 

genotype) and VP4 (P genotype) (Estes and Kapikian, 2007). At least 27 G and 35 P 

genotypes have been designated for human and animal strains (Matthijnssens et al., 2011). 

Five strains, G1P1A[8], G2P1B [4] G3P1A[8], G4P1A[8], and G9P1A[8] are the globally 

predominant human pathogens (Gentsch et al., 2005) and have been targeted in vaccine 

development.

Two live-attenuated oral vaccines, RotaTeq® (Merck, Whitehouse Station, NJ, USA) and 

Rotarix® (GlaxoSmithKline, Research Triangle Park, NC, USA) have been introduced into 

childhood immunization programs in the United States and other countries (Glass et al., 

2006). RotaTeq® is a pentavalent human-bovine reassortant rotavirus vaccine that includes 

genes of human rotavirus serotypes G1-G4 and P1A[8]. Rotarix® vaccine is a monovalent 

vaccine derived from a G1P1A[8] human rotavirus strain. Transmission and shedding of 

rotavirus vaccine strains has been reported (Donato et al., 2012; Payne et al., 2010; Rivera et 

al., 2011; Yen et al., 2011).

To monitor circulating rotavirus serotypes before and after vaccine introduction, including 

any possible emerging or novel strains post-vaccine introduction, many countries conduct 

regional rotavirus strain surveillance programs. In the United States, surveillance by the 

Centers for Disease Control and Prevention (CDC), in collaboration with laboratories of the 

National Rotavirus Strain Surveillance System (NRSSS) (Griffin et al., 2000; 

Ramachandran et al., 1998), and the New Vaccine Surveillance Network (Payne et al., 

2008), has been ongoing since 1996 and 2006, respectively.

Rotavirus strain surveillance programs typically use reverse transcription-polymerase chain 

reaction (RT-PCR)-based methods to determine rotavirus genotypes directly from RNA 

extracted from stool specimens (Das et al., 1994; Gentsch et al., 1992; Gouvea et al., 1990) 

and rotavirus detection by real time RT-PCR (qRT-PCR) is increasing in use (Freeman et 

al., 2008). Fecal samples are among the most difficult clinical samples to process because of 

the presence of very potent inhibitors of nucleic acid amplification such as complex 

polysaccharides, bilirubin and bile salts (Chiu and Ou, 1996; Monteiro et al., 1997; Pandey 

et al., 1996). Difficulty in eliminating RT-PCR inhibitors from stool extracts has been 

reported extensively (Lantz et al., 1997; Makristathis et al., 1998; Monteiro et al., 1997; 

Petrich et al., 2006). Inhibitory effects can be reduced by adding amplification facilitators 

such as bovine serum albumin to the PCR reaction (Kreader, 1996), using thermostable 

polymerases that are more resistant to PCR inhibition (Abu Al-Soud and Radstrom, 1998), 

or using more efficient processes for extracting nucleic acid from stool samples. The 

efficiency of nucleic acid extraction and purification influences the sensitivity, 

reproducibility and the accuracy of RT-PCR target detection (Lim et al., 2005). During the 

last 10 years, several new manual, semi-automated and automated commercial nucleic acid 

or RNA extraction systems using magnetic beads or silica particles have been developed for 
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DNA, RNA or total nucleic acid extraction which are attractive due to their flexibility, 

convenience, and ease of use (Tang et al., 2005a). A small number of studies have compared 

some of these novel extraction methods and reported that they differ in their ability to 

recover viral RNA, indicating that no single RNA extraction method is optimal for all 

viruses (Baert et al., 2007; Hale et al., 1996; Kok et al., 2000; Petrich et al., 2006).

The most recent study comparing nucleic acid extraction methods for rotavirus detection in 

stool was published in 2002 (Rasool et al., 2002). Since then, a number of new nucleic acid 

extraction systems using magnetic beads or silica particles have been developed, both in 

automated and manual formats (Dundas et al., 2008b; Perelle et al., 2009; Schuurman et al., 

2007; Tang et al., 2005b). Although some of these extraction systems have been used 

extensively for the extraction of rotavirus RNA from stool and other clinical and 

environmental samples (Banyai et al., 2011; Doan et al., 2011; Esona et al., 2010a; Esona et 

al., 2010b; Freeman et al., 2008; Hull et al., 2011; Matthijnssens et al., 2006; Rahman et al., 

2010; Rahman et al., 2007a; Rahman et al., 2007b; Zeller et al., 2010), they have not been 

evaluated formally to determine which method is most efficient for extraction of rotavirus 

RNA.

The objective of this study was to identify the best commercially-available nucleic acid 

extraction method for preparing stool samples for detection of rotaviruses by both 

conventional RT-PCR and qRT-PCR. This information will be very useful for rotavirus 

surveillance programs, diagnostics, and epidemiologic studies.

Materials and Methods

Stool samples

Eight rotavirus positive stool samples with optical density (OD) values ranging from 0.176 

to 3.098 , as determined by enzyme immunoassay (EIA) (Premier™ RotaClone®, Meridian 

Bioscience, Cincinnati, OH, USA), were used to prepare 10% suspensions in phosphate-

buffered saline solution. These samples (5627:EIA OD=0.854, genotype G2P[4]; 

5628:OD=0.176, G2P[4]; 5629:OD=0.547, G2P[4]; 5630:OD=3.098, G4P[8]; 

5631:OD=2.075, G4P[8]; 5633:OD=1.768, G2P[4]; 5634:OD=0.318, G1P[8]; and 

5635:OD=0.315, G1P[8]) were collected in Nicaragua during the 2009 rotavirus season.

Extraction methods

Six commercial extraction methods for total nucleic acid or RNA were evaluated: the 

automated MagNA Pure Compact (Roche Applied Science, Indianapolis, IN, USA), 

KingFisher Flex-96 (ThermoFisher, Pittsburgh, PA, USA), and NucliSENS® easyMAG® 

(BioMerieux, Durham, NC, USA) methods; the semi-automated NucliSENS® miniMAG® 

(BioMerieux, Durham, NC, USA); and the manual QIAamp Viral RNA mini kit 

(Qiagen,Valencia, CA, USA) and RNaid® kit (Qbiogene, Carlsbad, CA, USA) with a 

modified protocol) (Table 1). Each extraction method was chosen because it had been used 

previously in studies for the extraction of nucleic acid from stool. The MagNA Pure LC 

instrument has been used to purify nucleic acid from many types of clinical specimens 

including stool samples for rotavirus (Dalesio et al., 2004; Petrich et al., 2006; Schmid et al., 
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2004; Wolk et al., 2002; Wu et al., 2011) but is no longer in production so the MagNA Pure 

Compact instrument, which uses the same paramagnetic bead technology, was evaluated 

instead . The MagNA Pure Compact was used with the MagNA Pure Compact RNA 

Isolation Kit (Roche Applied Science Indianapolis, IN, USA). The easyMAG and miniMAG 

extraction platforms utilize the same silica extraction technology and use the same reagents. 

Both methods are universal and can be applied to a broad range of different specimens such 

as blood, sputum, serum, throat swabs and stool (Dundas et al., 2008a; Freeman et al., 2008; 

Loens et al., 2008; Perelle et al., 2009; Tang et al., 2005b). Both methods have been used for 

extraction of rotavirus RNA from stool (Hull et al., 2011). The easyMAG and miniMAG are 

mainly used in laboratories that require moderate- and low-throughput, respectively (Yang 

et al., 2011). The KingFisher Flex (96 deep well magnet head) designed for high throughput 

laboratories, is an automated extractor also used for rotavirus RNA extraction (Freeman et 

al., 2008; Grant et al., 2011; Hull et al., 2011). In this study it was used with the MagMax™- 

96 Total RNA Isolation Kit (Applied Biosystems, Foster City, CA, USA). The QIAamp 

Viral RNA Mini kit, which is based on silica membrane technology, has been used 

extensively for the extraction of rotavirus RNA from stool (Doan et al., 2011; Matthijnssens 

et al., 2006; Rahman et al., 2007a; Rahman et al., 2007b; Zeller et al., 2010).

The RNaid kit extraction protocol, which uses glass powder to capture and purify rotavirus 

RNA, has been modified and used by the CDC Rotavirus Surveillance Laboratory routinely 

since the 1990’s along with other methods to extract rotavirus RNA from stool. (Gentsch et 

al., 1992; Jothikumar et al., 2009). In brief, 200 −L of clarified 10% stool suspension was 

mixed directly with 400 −L 6M guanidine thiocyanate (Ultrapure Grade; Boehringer 

Mannheim, Germany) and 10 −L of RNAID glass powder. The mixture was then vortexed 

and mixed on a Nutator rocker (Clay Adams Division, Becton-Dickinson, Parsippany, NJ, 

USA) for 15 min at room temperature. Each sample was then centrifuged for 60 s at 650 × g 

and the supernatant was removed by aspiration with a Pasteur pipette. The samples were 

washed once with 700 −L of guanidine thiocyanate wash solution (4 M guanidine 

thiocyanate, 16.7 mM Tris-HCl, pH 7.5) and centrifuged at 850 × g for 60 s. The supernatant 

was aspirated and the samples were then washed two times with 400 −L of the RNAID kit 

wash buffer and centrifuged at 850 × g for 60 s. The supernatant was aspirated, and the 

samples were washed once more with the same buffer and were then finally centrifuged at 

10,000 × g for 120 s. After aspiration of the supernatant, the samples were dried at room 

temperature for 1 hour, resuspended in 35 −L of nuclease free water, and incubated for 10 

min at 65°C. The samples were centrifuged at 10,000 × g for 120 s, and the supernatant was 

transferred to microcentrifuge tubes (Lube Tube; Marsh Co., Rochester NY, USA). The 

pellet was re-extracted with the same volume of water (35 −L), and the combined 

supernatants were stored at −80°C until they were used. Immediately before use for PCR, 

the supernatants were incubated at 56°C for 5 min and were then centrifuged at 10,000 × g 

for 60 s to pellet the residual RNAID from the sample.

With the exception of the RNaid kit as described, extractions were performed according to 

kit and instrument protocols. Single aliquots of each stool suspension and a negative control 

stool were extracted in triplicate by each method.
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qRT-PCR

The total nucleic acid or RNA extracts were amplified in duplicate by rotavirus NSP3 gene 

qRT-PCR (Freeman et al., 2008) modified for use on ABI 7500 Fast Real-Time PCR 

System (Applied Biosystems, Foster City, CA, USA) with the 7500 Fast SDS software 

v1.4.0. No-template and positive controls were included in each run. All assays were run 

using the standard mode on the ABI 7500 Fast instrument. Before beginning the TaqMan 

cycling conditions, each RNA extract was first denatured in a thermocycler at 95°C for 5 

min followed by a 1 min incubation on ice. The thermocycling program used was 30 min 

reverse transcription at 50°C (1 cycle), followed by a 15 min enzyme deactivation step at 

95°C (1 cycle), and 45 cycles of amplification that consisted of denaturation at 95°C for 15 

sec and annealing and extension at 60°C for 1 min.

To test for potential carryover of RT-PCR inhibitors from the stool samples into total 

nucleic acid or RNA extracts, extracts from three stool samples were diluted 1:10 in 

nuclease free water and re-tested in duplicate by qRT-PCR as previously described by 

Petrich et al (Petrich et al., 2006).

Comparison of dilution series extracts by conventional RT-PCR and qRT-PCR

A 10% suspension prepared from stool sample with a high viral concentration (OD value 

3.098) was serially diluted 10−1 to 10−7 in a rotavirus-negative stool suspension and then re-

tested by EIA. Total nucleic acid or RNA was extracted by each of the six methods and 

tested by VP6 RT-PCR and NSP3 qRT-PCR (Freeman et al., 2008; Iturriza Gomara et al., 

2002). For the real-time assay, each dilution was tested in duplicate and the average 

threshold cycle (Ct) value for each reaction was calculated. VP6 RT-PCR amplicons were 

detected by electrophoresis of the amplified products through 1% agarose gels containing 

GelRed (Biotium, Heyward, CA, USA) and RT-PCR products were detected under UV 

transillumination.

Cost and time analysis

Extraction cost per sample was estimated using the 2012 manufacturer price of each 

extraction kit or reagents. Hands-on time for the MagNA Pure Compact system, miniMAG 

system, RNaid kit, and QIAamp Viral RNA Mini was measured as time per sample when 

eight extractions were performed in parallel. Also, the easyMAG and KingFisher Flex 

systems were timed using a run of eight samples. For all methods, operator’s hands-on time 

was measured as the total time to perform each step in the extraction process. Total time to 

completion (hands-on and hands-off) was determined by timing a complete run on each 

instrument, from the addition of the first reagent to the recovery of the RT-PCR-ready 

nucleic acid.

Statistical analysis

Prism Version 5.02 Software for Windows (GraphPad Software, La Jolla CA) was used to 

plot Ct values. To determine whether the differences in Ct values for nucleic acid extracts 

prepared using each extraction method were significant, Ct values were compared using the 

Friedman test. When significant differences were identified, Dunn’s Multiple Comparison 

Test was used to perform nonparametric pairwise analyses of Ct values.
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Results

Comparison of extraction methods by qRT-PCR

When qRT-PCR results were compared for all six extraction methods, samples extracted by 

using the MagNA Pure Compact system yielded the lowest average Ct values for 6 of 8 

stools, including the 5 highest concentration samples as determined at EIA; the RNaid 

performed best with the other two samples which were among the 3 lowest concentration 

samples as determined by EIA (Fig. 1). Statistical analysis of method-to-method variability 

detected significant differences among the mean Ct values for all nucleic acid extracts 

obtained using the 6 methods (P < 0.001). When pairwise analyses of extraction method data 

were performed, the mean Ct values for KingFisher Flex extracts were significantly higher 

than those of the best performing method (MagNA Pure Compact or RNaid kit) for 7 of 8 

samples as was the case for the QIAamp Viral RNA Mini kit with 6 samples (Fig. 1). In the 

case of 4 samples (5630, 5631, 5627, 5629) where the MagNA Pure Compact extracts 

yielded the lowest mean Ct values, the values for the RNaid kit were significantly higher 

(Fig. 1). In the two cases where the RNaid kit extracts yielded the lowest mean Ct values 

(samples 5634 and 5628), the mean Ct values for the MagNA Pure Compact extracts were 

not significantly different. With 2 samples (5634, 5635), the mean Ct values for miniMAG 

extracts were significantly higher than the best performing method. The mean Ct values for 

the easyMAG were never the lowest but never differed significantly from the best 

performing method.

Inhibitors were detected in extracts prepared with the QIAamp Viral RNA Mini kit; the 1:10 

dilutions of each QIAamp Viral RNA Mini kit extract exhibited lower Ct values than the 

undiluted extract (Table 2), with average Ct values decreasing 1.3 to 2.5 cycles. The 1:10 

dilutions of the extracts prepared using the other extraction methods showed increases in Ct 

values by 2 to 4 cycles, consistent with a dilution effect of target RNA.

Comparison of dilution series extracts by conventional RT-PCR and qRT-PCR

Extracts from serially diluted stool samples were analyzed for the presence of the template 

using VP6 RT-PCR (Iturriza Gomara et al., 2002) and the NSP3 qRT-PCR assay (Freeman 

et al., 2008). For the conventional RT-PCR assay, analysis by gel electrophoresis revealed a 

single band of the expected size for all rotavirus samples (Fig. 2). MagNA Pure Compact 

and KingFisher Flex were the only platforms capable of producing amplifiable template 

from all 7 dilutions (10−1 to 10−7). The QIAamp Viral RNA kit, and miniMAG systems 

yielded amplifiable template in 5 out of the 7 dilutions (10−1 to 10−5). The RNaid® kit and 

easyMAG® system yielded template with the poorest level of detection with template 

detected in the first 3 dilutions (10−1 to 10−3) only. With the qRT-PCR, the Ct values 

obtained with each method increased with each sample dilution and all rotavirus RNA was 

detected in all dilutions for all six extraction methods (Table 3) but there were significant 

differences in Ct values among the six methods (P<0.0001). Ct values obtained from extracts 

prepared using the RNaid® kit were significantly lower than those obtained for the 

easyMAG®, miniMAG®, and QIAamp Viral Mini RNA kit extracts (Table 3). Extracts 

prepared using the KingFisher Flex yielded Ct values that were significantly lower than 

those obtained from easyMAG® and miniMAG® extracts (Table 3). Ct values obtained 
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from extracts prepared using the MagNA Pure Compact were significantly lower than those 

obtained for the miniMAG® (Table 3). Extracts prepared using the RNaid® kit, MagNA 

Pure Compact and KingFisher Flex did not differ significantly (Table 3).

Cost and time analysis

The total extraction time for 8 samples ranged from approximately 40 min for QIAamp 

Viral RNA Mini kit and KingFisher Flex to approximately 110 min for the RNaid kit (Table 

4). The RNaid kit had the lowest cost/per sample and MagNA Pure Compact was the most 

expensive. The KingFisher Flex had the highest sample throughput (up to 96 samples/run).

Discussion

Evaluation of the six commercial extraction platforms using stool samples indicated that the 

MagNA Pure Compact performed best for isolating rotavirus RNA that could be amplified 

by both conventional RT-PCR and qRT-PCR. No PCR inhibitors were detected in the 

extracts, which most often yielded the lowest Ct values. Although it is the most costly, this 

method was the most consistent and had relatively low hands-on and hands-off time 

processing time. Without knowledge of the proprietary components of the kit used with 

MagNA Pure Compact RNA Isolation kit, the reason for its superior performance cannot be 

determined. However, a possible explanation is that the method uses silica-coated magnetic 

beads, and the extraction process includes a DNase treatment step. The easyMAG, 

miniMAG and KingFisher Flex methods also use magnetic beads but without a DNase 

treatment step. The Ct values for extracts obtained using these methods were always higher 

but the extracts were not found to contain inhibitors of RT-PCR. The easyMAG and 

miniMAG extraction platforms are total nucleic acid extraction methods, suggesting that 

DNA in the extracts may have interfered with the extraction process or RT-PCR. The 

KingFisher Flex is an RNA only extraction method, but without a DNase treatment step the 

extracted product is likely to be contaminated with DNA. Therefore, the sub-optimal 

performance of the KingFisher Flex may be a function of the small volume of sample 

processed (50 −L) as well as the presence of DNA in the extract.

The QIAamp Viral Mini RNA kit yielded extracts with mean Ct values which were 

significantly higher than the best performing method with 6 samples. This study showed that 

use of the QIAamp Viral RNA Mini kit can lead to carryover of RT-PCR inhibitors for 

rotavirus RNA detection, since the 1:10 dilution of extracts lowered the Ct values. Detection 

of partial amplification inhibition has been reported for stool samples extracted using the 

QIAamp Viral RNA kit when stool extracts were tested for SARS coronavirus RNA (Petrich 

et al., 2006). The rest of the extraction methods showed no notable inhibition, only an 

expected dilution effect which results in an increase in Ct values.

When a dilution series of rotavirus positive stool diluted in a negative stool was extracted by 

each of the six methods and then tested by qRT-PCR, rotavirus RNA was detected in all 

samples. When each set of extracts from the dilution series was tested by conventional RT-

PCR assays, however, only the MagNA Pure Compact and KingFisher Flex extracts were 

able to yield a detectable product in all seven dilutions. This observation could be the result 

of differences in amplicon size between the two methods, 91 base-pairs for qRT-PCR versus 
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379 bp for conventional RT-PCR. Rotavirus RNA extracted by using the RNaid kit may be 

sheared or somehow damaged by the manual extraction procedure of this kit with reduced 

detection efficiency of larger RNA molecules. Automated methods such as the MagNA Pure 

Compact and KingFisher Flex may damage RNA less than manual methods. Although 

limitations for detection at low virus concentrations may not be of concern when testing 

samples from persons with acute rotavirus gastroenteritis, from whom rotavirus typically is 

shed at very high concentrations in stool (approximately 1010 to 1011 particles/gram of 

stool) (Ray et al., 2006), this limitation would be important when choosing a method to 

extract samples from convalescent cases or healthy controls in which the viral concentration 

would be expected to be much lower.

Two limitations of this study should be noted. Because of the differences in extraction 

products (total nucleic acid or RNA), as well the presence of carrier RNA in the QIAamp 

Viral Mini RNA kit extracts, no attempt was made to measure directly and compare the 

quantity of the nucleic acid in the sample extracts tested. Also, no internal positive control 

was included in the extractions. Another limitation of this study was the lack of an 

encapsulated RNA control that could be spiked into stool, without RNA degradation by 

nucleases present in feces, and detected post-extraction by qRT-PCR and RT-PCR. Efforts 

to develop such a control are currently underway.

In summary, this study reports the most extensive evaluation to date of extraction platforms 

for the purification of rotavirus RNA from stool samples. The findings of this study will be 

very useful for laboratories in the selection of extraction methods for detection of rotavirus 

RNA in stool and the development of future protocols for rotavirus testing and surveillance.
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Figure 1. 
Scatter plots showing the distribution of Ct values obtained using RNA or total nucleic acid 

prepared from eight rotavirus samples using six different extraction protocols. The 

horizontal line in each group of observed values for a method corresponds to the mean 

value. Sample ID and OD values (in parentheses) are indicated above each scatter plot 

graph. T-bars indicate the standard deviation of the mean. The best performing method for 

each sample is labeled with a ★.

Methods with mean Ct values that were found to be significantly higher than the best 

performing method are labeled with * (P < 0.05), ** (P<0.01), or *** (P<0.001).
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Figure 2. 
Gels showing limit of detection of rotavirus VP6 gene fragment (379 bp) by conventional 

RT-PCR using RNA or total nucleic acid extracted from a stool sample containing a high 

concentration of rotavirus (EIA OD value = 3.0) diluted 10−1 to 10−7 in a negative stool 

suspension, by each extraction method. A= MagNA Pure Compact, B= KingFisher Flex, C= 

QIAamp Viral RNA, D= miniMAG®, E= easyMAG® and F= RNaid®. MM= 100 bp Plus 

DNA Ladder.
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Table 4

Total time and cost per extraction.

Instrument/Kit Total time
(min)

Hands-on time
(min)

Hands-off
time (min)

Cost per
extraction

(US $)a

Extraction per
run

RNaid® ~110 ~50 ~60 0.87 n/a

QIAamp Viral
RNA Mini Kit

~40 ~30 ~10 3.94 n/a

MagNa Pure
Compact

~80 ~20 ~60 10.75 8

KingFisher
Flex

~85 ~55 ~30 3.48 96

easyMAG® ~71 ~25 ~46 8.84 24

miniMAG® ~72 ~57 ~15 6.3 12

a
Cost calculated in 2012
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